Oliver's Blog
  • 🤩Welcome!
  • Projects
    • RISC Game
    • Mini Amazon
    • HTTP Caching Proxy
    • Course Enrollment App
    • Fitness Tracker App
    • Voice Shopping Assistant
    • Graphics Town
  • Algo
    • Binary Search
      • Classical Binary Search
      • First Position of Target
      • Last Position of Target
      • Guess Number Higher or Lower
      • Search in a Big Sorted Array
      • Total Occurrence of Target
      • First Bad Version
      • Find Minimum in Rotated Sorted Array
      • Maximum Number in Mountain Sequence
      • Search a 2D Matrix
      • Search a 2D Matrix II
      • Search for a Range
      • Smallest Rectangle Enclosing Black Pixels
      • Find Peak Element
      • Search in Rotated Sorted Array
      • Wood Cut
      • Find the Duplicate Number
      • Sqrt(x) II
      • Maximum Average Subarray II
      • Copy Books
      • How Many Problem Can I Accept
    • Linked List
      • Insert Node in Sorted Linked List
      • Merge Two Sorted Lists
      • Merge K Sorted Lists
      • LRU Cache
      • Reverse Linked List II
      • Copy List with Random Pointer
      • Reverse Nodes in k-Group
      • Add Two Numbers
      • Swap Nodes in Pairs
      • Rotate List
      • Linked List Cycle
      • Linked List Cycle II
      • Intersection of Two Linked Lists
      • Remove Linked List Elements
      • Reverse Linked List
      • Delete Node in a Linked List
      • Odd Even Linked List
      • Partition List
    • Recursion Basics
      • Fibonacci
      • Double Factorial
      • Reverse Order Storage
      • Linked List Weighted Sum In Reverse Order
    • Binary Tree
      • 1. Traversal
        • Binary Tree Preorder Traversal
        • Binary Tree Inorder Traversal
        • Binary Tree Postorder Traversal
        • Construct Binary Tree from Inorder and Postorder Traversal
        • Minimum Depth of Binary Tree
        • Find Leaves of Binary Tree
        • Reconstruct Itinerary
      • 2. Classical Questions
        • Maximum Depth of Binary Tree
        • Average of Levels in Binary Tree
        • Binary Tree Leaf Sum
        • Invert Binary Tree
        • Binary Tree Path Sum
        • Binary Tree Path Sum II
        • Binary Tree Path Sum III
        • Clone Binary Tree
        • Sum Root to Leaf Numbers
        • Binary Tree Level Sum
        • Binary Tree Paths
      • 3. Binary Search Tree
        • Insert Node in a Binary Search Tree
        • Remove Node in Binary Search Tree
        • Validate Binary Search Tree
        • Trim a Binary Search Tree
        • Search Range in Binary Search Tree
        • Inorder Successor in BST
        • Binary Search Tree Iterator
        • Recover Binary Search Tree
      • 4. Divide and Conquer
        • Balanced Binary Tree
        • Minimum Subtree
        • Subtree with Maximum Average
        • Maximum Subtree
        • Lowest Common Ancestor of a Binary Tree
        • Lowest Common Ancestor II
        • Lowest Common Ancestor III
        • Binary Tree Maximum Path Sum II
        • Binary Tree Maximum Path Sum
        • Path Sum III
      • Convert Sorted Array to Binary Search Tree
      • Path Sum
      • Lowest Common Ancestor of a Binary Search Tree
      • Sum of Left Leaves
      • Minimum Absolute Difference in BST
      • Minimum Distance Between BST Nodes
      • Convert Sorted List to Binary Search Tree
      • Range Sum of BST
      • Kth Smallest Element in a BST
      • Find Largest Value in Each Tree Row
    • Sorting
      • Sort Integers
      • Merge Two Sorted Arrays
      • Reverse Pair
      • Sort List
      • Partition Array
      • Sort Colors
      • Kth Largest Element
      • Multi-keyword Sort
    • Two Pointers
      • Window Sum
      • Two Sum - Difference equals to target
      • Valid Palindrome
      • Remove Duplicates from Sorted Array
      • Recover Rotated Sorted Array
      • Two Sum II - Input array is sorted
      • Two Sum - Unique pairs
      • Two Sum - Closest to target
    • Queue & Stack
      • Implement Queue by Interface
      • Implement Stack
      • Implement Queue by Two Stacks
      • Implement Stack by Two Queues
      • Binary Tree Level Order Traversal
      • Valid Parentheses
      • Min Stack
      • Largest Rectangle in Histogram
      • Evaluate Reverse Polish Notation
      • Implement Queue by Linked List II
      • Basic Calculator II
      • Moving Average from Data Stream
      • Reveal Cards In Increasing Order
      • Longest Valid Parentheses
    • Hash Table
      • Rehashing
      • Valid Anagram
      • Two Sum
      • Contiguous Array
      • Anagrams
      • Remove Duplicate Numbers in Array
      • Friendship Service
    • Heap & Priority Queue
      • Heapify
      • Top k Largest Numbers II
      • K Closest Points
      • Kth Smallest Number in Sorted Matrix
      • Find Median from Data Stream
      • Sliding Window Median
      • Trapping Rain Water II
      • High Five
    • BFS
      • 1. BFS in Binary Tree
        • Check Full Binary Tree
        • Binary Tree Level Order Traversal II
        • Binary Tree Maximum Path Sum II
        • Convert Binary Tree to Linked Lists by Depth
      • 2. Connected Graph & Topologic Sorting
        • Search Graph Nodes
        • Graph Valid Tree
        • Connected Component in Undirected Graph
        • Topological Sorting
        • Course Schedule
        • Course Schedule II
        • Sequence Reconstruction
        • Clone Graph
        • Alien Dictionary
    • Array
      • Remove Element
      • Search Insert Position
      • Maximum Subarray
      • Plus One
      • Merge Sorted Array
      • Pascal's Triangle
      • Pascal's Triangle II
      • Best Time to Buy and Sell Stock
      • Best Time to Buy and Sell Stock II
      • Majority Element
      • Contains Duplicate
      • Contains Duplicate II
      • Summary Ranges
      • Missing Number
      • Move Zeroes
      • Third Maximum Number
      • Binary Search
      • Pairs of Songs With Total Durations Divisible by 60
      • 3Sum
      • Median of Two Sorted Arrays
      • Running Sum of 1d Array
      • Container With Most Water
    • String
      • Longest Substring Without Repeating Characters
      • Roman to Integer
      • Implement strStr()
      • Reverse Words in a String
      • First Unique Character in a String
      • Count Unique Characters of All Substrings of a Given String
    • Math
      • Pow(x, n)
      • Narcissistic Number
      • A + B Problem
    • Dynamic Programming
      • Fibonacci Number
      • N-th Tribonacci Number
      • Climbing Stairs
      • Min Cost Climbing Stairs
    • LeetCode vs. LintCode Table
  • React Notes
    • Optimizing Performance in React
  • Golang Notes
    • Basics
      • Setup
      • Hello World
      • Structure
      • Data Types
      • Variables
      • Operators
      • Constants
      • Decision Making
      • Loops
      • Special Statements
    • Official Tutorial Notes
      • More Types
        • Functions
        • Pointers
        • Structs
        • Arrays
        • Slices
        • Range
        • Maps
        • More Functions
      • Methods and Interfaces
        • Methods
        • Interfaces
        • Stringers
        • Errors
        • Images
        • Readers
      • Concurrency
        • Goroutines
        • Channels
        • Range and Close
        • Select
        • Mutual Exclusion
  • Miscellaneous
    • Traveling to China During a Global Pandemic
Powered by GitBook
On this page
  • Solution 1 (Java)
  • Notes
  • Solution 2 (Java)
  • Notes

Was this helpful?

  1. Algo
  2. Heap & Priority Queue

Kth Smallest Number in Sorted Matrix

ID: 401; medium

PreviousK Closest PointsNextFind Median from Data Stream

Last updated 3 years ago

Was this helpful?

Solution 1 (Java)

public class Solution {

    class Pair {
        int x, y, val;
        public Pair(int x, int y, int val) {
            this.x = x;
            this.y = y;
            this.val = val;
        }
    }
    /**
     * @param matrix: a matrix of integers
     * @param k: An integer
     * @return: the kth smallest number in the matrix
     */
    public int kthSmallest(int[][] matrix, int k) {
        int[] dx = {0, 1};
        int[] dy = {1, 0};
        int n = matrix.length, m = matrix[0].length;
        boolean[][] visited = new boolean[n][m];
        Queue<Pair> minHeap = new PriorityQueue<>(new Comparator<Pair>() {
            public int compare(Pair p1, Pair p2) {
                return p1.val - p2.val;
            }
        });
        minHeap.offer(new Pair(0, 0, matrix[0][0]));

        for (int i = 0; i < k - 1; i++) {
            Pair curr = minHeap.poll();
            for (int j = 0; j < 2; j++) {
                int next_x = curr.x + dx[j];
                int next_y = curr.y + dy[j];
                if (next_x < n && next_y < m && !visited[next_x][next_y]) {
                    Pair next = new Pair(next_x, next_y, matrix[next_x][next_y]);
                    minHeap.offer(next);
                    visited[next_x][next_y] = true;
                }
            }
        }
        return minHeap.peek().val;
    }
}

Notes

  • We use a min heap to keep track of the numbers. This solution is essentially a BFS. Starting from the top left number, which is the minimum number in the matrix, then we add the number on its right and the number below it.

  • We poll the min heap k - 1 times and eventually we end up with the kth smallest number in the heap.

  • It is also important to keep track of which numbers are already visited, just like what is down in graph traversal problems;

  • Time complexity: O(klogn)

Solution 2 (Java)

public class Solution {

    class Result {
        boolean exists;
        int rank;
        public Result(boolean e, int r) {
            exists = e;
            rank = r;
        }
    }
    /**
     * @param matrix: a matrix of integers
     * @param k: An integer
     * @return: the kth smallest number in the matrix
     */
    public int kthSmallest(int[][] matrix, int k) {
        int n = matrix.length, m = matrix[0].length;
        int left = matrix[0][0];
        int right = matrix[n - 1][m - 1];
        while (left <= right) {
            int mid = left + (right - left) / 2;
            Result res = check(mid, matrix);
            if (res.exists && res.rank == k) {
                return mid;
            } else if (res.rank < k) {
                left = mid + 1;
            } else {
                right = mid - 1;
            }
        }
        return left;
    }

    private Result check(int value, int[][] matrix) {
        int n = matrix.length, m = matrix[0].length;
        int i = n - 1, j = 0;
        Result res = new Result(false, 0);
        while (i >= 0 && j < m) {
            if (matrix[i][j] == value)
                res.exists = true;
            if (matrix[i][j] <= value) {
                res.rank += i + 1;
                j += 1;
            } else {
                i -= 1;
            }
        }
        return res;
    }

    
}

Notes

  • Using the sorted property, it is natural to think about binary search.

LintCode 炼码
Logo