Binary Tree Maximum Path Sum II
ID: 475; medium
Solution 1 (Java)
/**
* Definition of TreeNode:
* public class TreeNode {
* public int val;
* public TreeNode left, right;
* public TreeNode(int val) {
* this.val = val;
* this.left = this.right = null;
* }
* }
*/
public class Solution {
/**
* @param root: the root of binary tree.
* @return: An integer
*/
public int maxPathSum2(TreeNode root) {
if (root == null)
return 0;
int leftSum = maxPathSum2(root.left);
int rightSum = maxPathSum2(root.right);
int leftOrRight = Math.max(leftSum + root.val, rightSum + root.val);
return Math.max(root.val, leftOrRight);
}
}
Solution 2 (Java)
/**
* Definition of TreeNode:
* public class TreeNode {
* public int val;
* public TreeNode left, right;
* public TreeNode(int val) {
* this.val = val;
* this.left = this.right = null;
* }
* }
*/
public class Solution {
private class SumNode {
public TreeNode node;
public int sum;
public SumNode(TreeNode node, int sum) {
this.node = node;
this.sum = sum;
}
}
/**
* @param root: the root of binary tree.
* @return: An integer
*/
public int maxPathSum2(TreeNode root) {
if (root == null)
return 0;
int ans = Integer.MIN_VALUE;
Queue<SumNode> q = new ArrayDeque<>();
q.offer(new SumNode(root, root.val));
while (!q.isEmpty()) {
SumNode curr = q.poll();
if (curr.sum > ans)
ans = curr.sum;
if (curr.node.left != null)
q.offer(new SumNode(curr.node.left, curr.sum + curr.node.left.val));
if (curr.node.right != null)
q.offer(new SumNode(curr.node.right, curr.sum + curr.node.right.val));
}
return ans;
}
}
Notes
Non-recursive version using a queue.
Last updated