Topological Sorting
ID: 127; medium
Solution 1 (Java)
/**
* Definition for Directed graph.
* class DirectedGraphNode {
* int label;
* List<DirectedGraphNode> neighbors;
* DirectedGraphNode(int x) {
* label = x;
* neighbors = new ArrayList<DirectedGraphNode>();
* }
* }
*/
public class Solution {
/**
* @param graph: A list of Directed graph node
* @return: Any topological order for the given graph.
*/
public ArrayList<DirectedGraphNode> topSort(ArrayList<DirectedGraphNode> graph) {
ArrayList<DirectedGraphNode> res = new ArrayList<>();
Map<DirectedGraphNode, Integer> inDegree = new HashMap<>();
for (DirectedGraphNode n : graph) {
for (DirectedGraphNode nei : n.neighbors) {
if (inDegree.containsKey(nei)) {
inDegree.put(nei, inDegree.get(nei) + 1);
} else {
inDegree.put(nei, 1);
}
}
}
Queue<DirectedGraphNode> q = new ArrayDeque<>();
for (DirectedGraphNode n : graph) {
if (!inDegree.containsKey(n)) {
q.offer(n);
}
}
while (!q.isEmpty()) {
DirectedGraphNode curr = q.poll();
res.add(curr);
for (DirectedGraphNode nei : curr.neighbors) {
inDegree.put(nei, inDegree.get(nei) - 1);
if (inDegree.get(nei) == 0) {
q.offer(nei);
}
}
}
return res;
}
}
Notes
It is important to keep track of the in-degree of the nodes.
Last updated