Oliver's Blog
  • 🤩Welcome!
  • Projects
    • RISC Game
    • Mini Amazon
    • HTTP Caching Proxy
    • Course Enrollment App
    • Fitness Tracker App
    • Voice Shopping Assistant
    • Graphics Town
  • Algo
    • Binary Search
      • Classical Binary Search
      • First Position of Target
      • Last Position of Target
      • Guess Number Higher or Lower
      • Search in a Big Sorted Array
      • Total Occurrence of Target
      • First Bad Version
      • Find Minimum in Rotated Sorted Array
      • Maximum Number in Mountain Sequence
      • Search a 2D Matrix
      • Search a 2D Matrix II
      • Search for a Range
      • Smallest Rectangle Enclosing Black Pixels
      • Find Peak Element
      • Search in Rotated Sorted Array
      • Wood Cut
      • Find the Duplicate Number
      • Sqrt(x) II
      • Maximum Average Subarray II
      • Copy Books
      • How Many Problem Can I Accept
    • Linked List
      • Insert Node in Sorted Linked List
      • Merge Two Sorted Lists
      • Merge K Sorted Lists
      • LRU Cache
      • Reverse Linked List II
      • Copy List with Random Pointer
      • Reverse Nodes in k-Group
      • Add Two Numbers
      • Swap Nodes in Pairs
      • Rotate List
      • Linked List Cycle
      • Linked List Cycle II
      • Intersection of Two Linked Lists
      • Remove Linked List Elements
      • Reverse Linked List
      • Delete Node in a Linked List
      • Odd Even Linked List
      • Partition List
    • Recursion Basics
      • Fibonacci
      • Double Factorial
      • Reverse Order Storage
      • Linked List Weighted Sum In Reverse Order
    • Binary Tree
      • 1. Traversal
        • Binary Tree Preorder Traversal
        • Binary Tree Inorder Traversal
        • Binary Tree Postorder Traversal
        • Construct Binary Tree from Inorder and Postorder Traversal
        • Minimum Depth of Binary Tree
        • Find Leaves of Binary Tree
        • Reconstruct Itinerary
      • 2. Classical Questions
        • Maximum Depth of Binary Tree
        • Average of Levels in Binary Tree
        • Binary Tree Leaf Sum
        • Invert Binary Tree
        • Binary Tree Path Sum
        • Binary Tree Path Sum II
        • Binary Tree Path Sum III
        • Clone Binary Tree
        • Sum Root to Leaf Numbers
        • Binary Tree Level Sum
        • Binary Tree Paths
      • 3. Binary Search Tree
        • Insert Node in a Binary Search Tree
        • Remove Node in Binary Search Tree
        • Validate Binary Search Tree
        • Trim a Binary Search Tree
        • Search Range in Binary Search Tree
        • Inorder Successor in BST
        • Binary Search Tree Iterator
        • Recover Binary Search Tree
      • 4. Divide and Conquer
        • Balanced Binary Tree
        • Minimum Subtree
        • Subtree with Maximum Average
        • Maximum Subtree
        • Lowest Common Ancestor of a Binary Tree
        • Lowest Common Ancestor II
        • Lowest Common Ancestor III
        • Binary Tree Maximum Path Sum II
        • Binary Tree Maximum Path Sum
        • Path Sum III
      • Convert Sorted Array to Binary Search Tree
      • Path Sum
      • Lowest Common Ancestor of a Binary Search Tree
      • Sum of Left Leaves
      • Minimum Absolute Difference in BST
      • Minimum Distance Between BST Nodes
      • Convert Sorted List to Binary Search Tree
      • Range Sum of BST
      • Kth Smallest Element in a BST
      • Find Largest Value in Each Tree Row
    • Sorting
      • Sort Integers
      • Merge Two Sorted Arrays
      • Reverse Pair
      • Sort List
      • Partition Array
      • Sort Colors
      • Kth Largest Element
      • Multi-keyword Sort
    • Two Pointers
      • Window Sum
      • Two Sum - Difference equals to target
      • Valid Palindrome
      • Remove Duplicates from Sorted Array
      • Recover Rotated Sorted Array
      • Two Sum II - Input array is sorted
      • Two Sum - Unique pairs
      • Two Sum - Closest to target
    • Queue & Stack
      • Implement Queue by Interface
      • Implement Stack
      • Implement Queue by Two Stacks
      • Implement Stack by Two Queues
      • Binary Tree Level Order Traversal
      • Valid Parentheses
      • Min Stack
      • Largest Rectangle in Histogram
      • Evaluate Reverse Polish Notation
      • Implement Queue by Linked List II
      • Basic Calculator II
      • Moving Average from Data Stream
      • Reveal Cards In Increasing Order
      • Longest Valid Parentheses
    • Hash Table
      • Rehashing
      • Valid Anagram
      • Two Sum
      • Contiguous Array
      • Anagrams
      • Remove Duplicate Numbers in Array
      • Friendship Service
    • Heap & Priority Queue
      • Heapify
      • Top k Largest Numbers II
      • K Closest Points
      • Kth Smallest Number in Sorted Matrix
      • Find Median from Data Stream
      • Sliding Window Median
      • Trapping Rain Water II
      • High Five
    • BFS
      • 1. BFS in Binary Tree
        • Check Full Binary Tree
        • Binary Tree Level Order Traversal II
        • Binary Tree Maximum Path Sum II
        • Convert Binary Tree to Linked Lists by Depth
      • 2. Connected Graph & Topologic Sorting
        • Search Graph Nodes
        • Graph Valid Tree
        • Connected Component in Undirected Graph
        • Topological Sorting
        • Course Schedule
        • Course Schedule II
        • Sequence Reconstruction
        • Clone Graph
        • Alien Dictionary
    • Array
      • Remove Element
      • Search Insert Position
      • Maximum Subarray
      • Plus One
      • Merge Sorted Array
      • Pascal's Triangle
      • Pascal's Triangle II
      • Best Time to Buy and Sell Stock
      • Best Time to Buy and Sell Stock II
      • Majority Element
      • Contains Duplicate
      • Contains Duplicate II
      • Summary Ranges
      • Missing Number
      • Move Zeroes
      • Third Maximum Number
      • Binary Search
      • Pairs of Songs With Total Durations Divisible by 60
      • 3Sum
      • Median of Two Sorted Arrays
      • Running Sum of 1d Array
      • Container With Most Water
    • String
      • Longest Substring Without Repeating Characters
      • Roman to Integer
      • Implement strStr()
      • Reverse Words in a String
      • First Unique Character in a String
      • Count Unique Characters of All Substrings of a Given String
    • Math
      • Pow(x, n)
      • Narcissistic Number
      • A + B Problem
    • Dynamic Programming
      • Fibonacci Number
      • N-th Tribonacci Number
      • Climbing Stairs
      • Min Cost Climbing Stairs
    • LeetCode vs. LintCode Table
  • React Notes
    • Optimizing Performance in React
  • Golang Notes
    • Basics
      • Setup
      • Hello World
      • Structure
      • Data Types
      • Variables
      • Operators
      • Constants
      • Decision Making
      • Loops
      • Special Statements
    • Official Tutorial Notes
      • More Types
        • Functions
        • Pointers
        • Structs
        • Arrays
        • Slices
        • Range
        • Maps
        • More Functions
      • Methods and Interfaces
        • Methods
        • Interfaces
        • Stringers
        • Errors
        • Images
        • Readers
      • Concurrency
        • Goroutines
        • Channels
        • Range and Close
        • Select
        • Mutual Exclusion
  • Miscellaneous
    • Traveling to China During a Global Pandemic
Powered by GitBook
On this page
  • Solution 1 (Java)
  • Solution 2 (Java)

Was this helpful?

  1. Algo
  2. Array

Container With Most Water

ID: 11; medium

Solution 1 (Java)

class Solution {
    public int maxArea(int[] height) {
        int maxArea = 0;
        for (int i = 0; i < height.length; i++) {
           for (int j = i + 1; j < height.length; j++) {
               int w = j - i;
               int h = Math.min(height[i], height[j]);
               maxArea = Math.max(maxArea, w * h);
           }
        }
        return maxArea;
    }
}

This is the brute force solution that iterates every possible areas that can be formed by the heights. This will not pass the LeetCode time constraint despite of its correctness.

Solution 2 (Java)

class Solution {
    public int maxArea(int[] height) {
        int left = 0, right = height.length - 1;
        int maxArea = 0;
        while (left < right) {
            int w = right - left;
            int h = Math.min(height[left], height[right]);
            maxArea = Math.max(maxArea, w * h);
            if (height[left] < height[right]) {
                left++;
            } else {
                right--;
            }
        }
        return maxArea;
    }
}

This is the two-pointer approach.

The best intuition for this approach I have come across is the following: To ensure the maximum area, there are two things in consideration: height and width. To start with, we have already had the largest width (by starting left = 0 and right = height.length - 1. When we consider left and right, if the left is shorter, we move the left pointer to the right because the current area is already the maximum area that can be formed by the left height. Namely, any movement of the right pointer to left would decrease the area. The same is for the other case for the right pointer.

You may also do a rigorous proof such as proof by contradiction.

TL;DR: Each step we are can only be improving the situation (not making it worse, i.e., decreasing the area). This is similar to the idea of proving a greedy algorithm.

PreviousRunning Sum of 1d ArrayNextString

Last updated 2 years ago

Was this helpful?