Binary Tree Path Sum III
ID: 472; hard; 二叉树的路径和 III
Solution 1 (Java)
/**
* Definition of ParentTreeNode:
*
* class ParentTreeNode {
* public int val;
* public ParentTreeNode parent, left, right;
* }
*/
public class Solution {
/*
* @param root: the root of binary tree
* @param target: An integer
* @return: all valid paths
*/
public List<List<Integer>> binaryTreePathSum3(ParentTreeNode root, int target) {
List<List<Integer>> result = new ArrayList<>();
if (root == null) return result;
List<ParentTreeNode> allNodes = new ArrayList<>();
inOrderTraversal(root, allNodes);
for (ParentTreeNode node : allNodes) {
HashSet<ParentTreeNode> set = new HashSet<>();
List<Integer> path = new ArrayList<>();
dfs(node, target, set, path, result);
}
return result;
}
private void inOrderTraversal(ParentTreeNode root, List<ParentTreeNode> allNodes) {
if (root == null) return;
inOrderTraversal(root.left, allNodes);
allNodes.add(root);
inOrderTraversal(root.right, allNodes);
}
private void dfs(ParentTreeNode root, int target, HashSet<ParentTreeNode> set, List<Integer> path, List<List<Integer>> result) {
// HashSet to prevent infinite looping
if (root == null || set.contains(root)) return;
set.add(root);
path.add(root.val);
target -= root.val;
if (target == 0) {
List<Integer> pathCopy = new ArrayList<>(path);
result.add(pathCopy);
}
// continue dfs on all directions
dfs(root.left, target, set, path, result);
dfs(root.right, target, set, path, result);
dfs(root.parent, target, set, path, result);
// reset the variables after done with one node
set.remove(root);
path.remove(path.size() - 1);
target += root.val;
}
}
Last updated