Construct Binary Tree from Inorder and Postorder Traversal

ID: 72; medium; 中序遍历和后序遍历树构造二叉树

Solution 1 (Java)

/**
 * Definition of TreeNode:
 * public class TreeNode {
 *     public int val;
 *     public TreeNode left, right;
 *     public TreeNode(int val) {
 *         this.val = val;
 *         this.left = this.right = null;
 *     }
 * }
 */

public class Solution {
    /**
     * @param inorder: A list of integers that inorder traversal of a tree
     * @param postorder: A list of integers that postorder traversal of a tree
     * @return: Root of a tree
     */
    public TreeNode buildTree(int[] inorder, int[] postorder) {
        int inLen = inorder.length;
        int postLen = postorder.length;
        if (inLen == 0 || postLen == 0 || inLen != postLen)
            return null;
        
        int rootVal = postorder[postLen - 1];
        int index = 0;
        for (int i = 0; i < inorder.length; i++) {
            if (inorder[i] == rootVal) {
                index = i;
                break;
            }
        }
        TreeNode root = new TreeNode(rootVal);

        int[] leftNewInorder = Arrays.copyOfRange(inorder, 0, index);
        // left new post order has the same range as above
        int[] leftNewPostorder = Arrays.copyOfRange(postorder, 0, index);
        int[] rightNewInorder = Arrays.copyOfRange(inorder, index + 1, inLen);
        // right new post order excludes the last element (root)
        int[] rightNewPostorder = Arrays.copyOfRange(postorder, index, postLen - 1);

        TreeNode left = buildTree(leftNewInorder, leftNewPostorder);
        TreeNode right = buildTree(rightNewInorder, rightNewPostorder);
        root.left = left;
        root.right = right;
        return root;
    }
}

Notes

  1. Find the root of the tree. It should be the last element of the postorder array.

  2. Find the index of the root in the inorder array.

  3. The interval [0, index) of the inorder array contains the left subtree, and the interval [index + 1, inLen) of the inorder array contains the right subtree.

Last updated