Construct Binary Tree from Inorder and Postorder Traversal
ID: 72; medium; 中序遍历和后序遍历树构造二叉树
Solution 1 (Java)
/** * Definition of TreeNode: * public class TreeNode { * public int val; * public TreeNode left, right; * public TreeNode(int val) { * this.val = val; * this.left = this.right = null; * } * } */publicclassSolution { /** * @param inorder: A list of integers that inorder traversal of a tree * @param postorder: A list of integers that postorder traversal of a tree * @return: Root of a tree */publicTreeNodebuildTree(int[] inorder,int[] postorder) {int inLen =inorder.length;int postLen =postorder.length;if (inLen ==0|| postLen ==0|| inLen != postLen)returnnull;int rootVal = postorder[postLen -1];int index =0;for (int i =0; i <inorder.length; i++) {if (inorder[i] == rootVal) { index = i;break; } }TreeNode root =newTreeNode(rootVal);int[] leftNewInorder =Arrays.copyOfRange(inorder,0, index);// left new post order has the same range as aboveint[] leftNewPostorder =Arrays.copyOfRange(postorder,0, index);int[] rightNewInorder =Arrays.copyOfRange(inorder, index +1, inLen);// right new post order excludes the last element (root)int[] rightNewPostorder =Arrays.copyOfRange(postorder, index, postLen -1);TreeNode left =buildTree(leftNewInorder, leftNewPostorder);TreeNode right =buildTree(rightNewInorder, rightNewPostorder);root.left= left;root.right= right;return root; }}
Notes
Find the root of the tree. It should be the last element of the postorder array.
Find the index of the root in the inorder array.
The interval [0, index) of the inorder array contains the left subtree, and the interval [index + 1, inLen) of the inorder array contains the right subtree.